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Abstract We present an exact calculation of the mean first-passage time to a target on the
surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffu-
sion on the domain boundary and phases of bulk diffusion. The presented approach is based
on an integral equation which can be solved analytically. Numerically validated approxi-
mation schemes, which provide more tractable expressions of the mean first-passage time
are also proposed. In the framework of this minimal model of surface-mediated reactions,
we show analytically that the mean reaction time can be minimized as a function of the
desorption rate from the surface.

Keywords Random walks - First-passage time - Intermittent search strategies

1 Introduction

The kinetics of many chemical reactions is influenced by the transport properties of the reac-
tants that they involve [1, 2]. In fact, schematically, any chemical reaction requires first that
a given reactant A meets a second reactant B. This first reaction step can be rephrased as a
search process involving a searcher A looking for a target B. In a very dilute regime, exem-
plified by biochemical reactions in cells [3] which sometimes involve only a few copies of
reactants, the targets B are sparse and therefore hard to find in this search process language.

0. Bénichou (X)) - C. Loverdo - R. Voituriez

Laboratoire de Physique Théorique de la Matiere Condensée (UMR 7600), case courrier 121,
Université Paris 6, 4 Place Jussieu, 75255 Paris Cedex, France

e-mail: benichou@Iptl.jussieu.fr

D.S. Grebenkov - P.E. Levitz
Laboratoire de Physique de la Matiére Condensée (UMR7643), CNRS — Ecole Polytechnique,
91128 Palaiseau Cedex, France

D.S. Grebenkov

Laboratoire Poncelet (UMI 2615), CNRS — Independent University of Moscow, Bolshoy Vlasyevskiy
Pereulok 11, 119002 Moscow, Russia

@ Springer


mailto:benichou@lptl.jussieu.fr

658 0. Bénichou et al.

In such reactions, the first step of search for reactants B is therefore a limiting factor of the
global reaction kinetics. In the general aim of enhancing the reactivity of chemical systems,
it is therefore needed to optimize the efficiency of this first step of search.

Recently, it has been shown that intermittent processes, combining slow diffusion phases
with a faster transport, can significantly increase reactions rates [4—6]. A minimal model
demonstrating the efficiency of this type of search, introduced to account for the fast search
of target sequences on DNA by proteins [7] is as follows (see also [8—11]). The pathway
followed by the protein, considered as a point-like particle, is a succession of 1D diffu-
sions along the DNA strand (called sliding phases) with diffusion coefficient D; and 3D
excursions in the surrounding solution. The time spent by the protein on DNA during each
sliding phase is assumed to follow an exponential law with dissociation rate A. In this mini-
mal model, the 3D excursions are uncorrelated in space, which means that after dissociation
from DNA, the protein will rebind the DNA at a random position independently of its start-
ing position. Assuming further that the mean duration of such 3D excursions 1, is finite, it
has been shown that the mean first-passage time at the target can be minimized as a function
of 7y = A~!, as soon as the mean time spent in bulk excursions is not too long. Quantitatively,
this condition writes in orders of magnitude as 7, < L?/D;, and the minimum of the search
time is obtained for t; ~~ 7, in the large L limit. Note that in this minimal model, where
the time 7, is supposed to be a fixed exterior parameter, bulk phases are always beneficial
in the large L limit (i.e. allow one to decrease the search time with respect to the situation
corresponding to 1D diffusion only).

In many practical situations however, the duration of the fast bulk excursions strongly
depends on the geometrical properties of the system [12—16] and cannot be treated as an
independent variable as assumed in the mean-field (MF) model introduced above. An im-
portant generic situation concerns the case of confined systems [17—-19], involving transport
of reactive molecules both in the bulk of a confining domain and on its boundary, referred
to as surface-mediated diffusion in what follows. This type of problems is met in situations
as varied as heterogeneous catalysis [20, 21], or reactions in porous media and in vesicular
systems [17, 18, 22]. In all these examples, the duration of bulk excursions is controlled
by the return statistics of the molecule to the confining surface, which crucially depends on
the volume of the system. This naturally induces strong correlations between the starting
and ending points of bulk excursions, and makes the above MF assumption of uncorrelated
excursions largely inapplicable in these examples.

At the theoretical level, the question of determining mean first-passage times in con-
finement has attracted a lot of attention in recent years for discrete random walks [23-29]
and continuous processes [30—34]. More precisely, the surface-mediated diffusion problem
considered here generalizes the so-called narrow escape problem, which refers to the time
needed for a simple Brownian motion in absence of surface diffusion to escape through a
small window of an otherwise reflecting domain. This problem has been investigated both
in the mathematical [22, 35-37] and physical [38—41] literature, partly due to the challenge
of taking into account mixed boundary conditions. The case of surface-mediated diffusion
brings the additional question of minimizing the search time with respect to the time spent
in adsorption, in the same spirit as done for intermittent processes introduced above. The
answer to this question is a priori not clear, since the mean time spent in bulk excursions
diverges for large confining domains, so that the condition of minimization mentioned pre-
viously cannot be taken as granted, even in the large system limit. In this context, first results
have been obtained in [42] where, surprisingly enough, it has been found that, even for bulk
and surface diffusion coefficients of the same order of magnitude, the reaction time can be
minimized, whereas MF treatments (see for instance [39]) predict a monotonic behavior.
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Fig.1 Model target

Here, we extend the perturbative results of [42] obtained in the small target size limit.
Relying on an integral equation approach, we provide an exact solution for the mean FPT,
both for 2D an 3D spherical domains, and for any spherical target size. We also develop
approximation schemes, numerically validated, that provide more tractable expressions of
the mean FPT.

2 The Model

The surface-mediated process under study is defined as follows. We consider a molecule
diffusing in a spherical confining domain of radius R (see Fig. 1), alternating phases of
boundary diffusion (with diffusion coefficient D;) and phases of bulk diffusion (with dif-
fusion coefficient D,). The time spent during each one-dimensional phase is assumed to
follow an exponential law with dissociation rate A. At each desorption event, the molecule
is assumed to be ejected at a distance a from the frontier (otherwise it is instantaneously
readsorbed). Although formulated for any value of this parameter a smaller than R, in most
physical situations of real interest a << R. The target is perfectly absorbing and defined in
2D by the arc 0 € [—¢, €], and in 3D by the region of the sphere such that 6 € [0, €] where
0 is in this case the elevation angle in standard spherical coordinates. Note that as soon as
€ # 0, the target can be reached either by surface or bulk diffusion. In what follows we
calculate the mean first-passage time at the target for an arbitrary initial condition of the
molecule.

3 2D case

In this section, the confining domain is a disk of radius R and the target is defined by the arc
0 e[—e, €]

3.1 Basic Equations

For the process defined above, the mean first-passage time (MFPT) at the target satisfies the
following backward equations

%tf(@) +A[tr(R—a,0) —11(0)] = —1 for0 e [e,2m — €], 1)
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2 19 1 32
D2< +-=+ >tz(r,9)=—1, (@)

it rar T

where #; stands for the MFPT starting from the circle at a position defined on the circum-
ference by the angle 6, and #, for the MFPT starting from the point (r, 8) within the disk.
In these two equations, the first term of the 1.h.s. accounts for the diffusion respectively on
the circumference and in the bulk, while the second term of (1) describes desorption events.
They have to be completed by two boundary conditions

n(R,0) =1(0), 3
1(0)=0 for6e[0,e]U[2m —¢,2m], )

which describe the adsorption events and the absorbing target respectively. Equation (2) is
easily shown to be satisfied by the following Fourier series

72

(o]
B(r0) =ag = =+ ) awr” cos(nf), )
2 n=1

with unknown coefficients «, to be determined. In particular, we aim at determining the
search time (¢;), defined as the MFPT, with an initial position uniformly distributed on the
boundary of the confining domain. Taking (5) at r = R, we have

R? & 10 if6ele,2m —el,
0 — S 3 R cos(ney = | 1@ 1O Eleam —e] )
4D, 0 if 8 €[0,e]U [2m — €, 2],

n=I1

so that
R2 1 2w —e
-— = H(0)do = (1),
a D, 271/; 1(9) ()
@)
1 2w —e€
R'a, = —/ t1(0)cos(nf)dd (n>1).
s €
In what follows we will make use of the following quantities:
w=R\/\/Dy, (8)
=1-2 ©)
x= R
and
1 R’—(R-a)
T=—4— . 10
ot D, (10)

As we proceed to show, two different approaches can be used to solve this problem. (i)
The first approach, whose main results have been published in [42], uses the explicit form
of the Green function for the two-dimensional problem and relies on a small target size €
expansion. We recall these perturbative results below for the sake of self-consistency and
give details of the derivation in Appendix A. (ii) The second approach presented next relies
on an integral equation which can be derived for #;, and leads to an exact non-perturbative
solution.
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3.2 Perturbative Approach

It is shown in Appendix A that the Fourier coefficients of #,(r, ) as defined in (5) satisfy an
infinite hierarchy of linear equations, which lead to the following small € expansion:

R? T 2°° 1
oy = —— w —_——mm—
*~ 4D, Z0)2(1—xm)+mz

m=1

(o]
1—x"
2 2
_ne+<1+2w E wz(l—x’")—{—mz)é}-i_“" (11
m=1

_ o’T {
~ RY(w?(1 —x") +n?)

—2+n*e*+--- ]

Oy

Note that (11) gives in particular the first terms of the perturbative expansion of the search
time (#;) defined in (7) and given in [42]. It should be stressed that since the coefficients of
€* of this expansion diverge with w, in practice one finds that the range of applicability in €
of this expansion is wider for @ small.

3.3 Integral Equation for #

In this section, we first show that the resolution of the coupled PDEs (1), (2) amounts to
solving an integral equation for #; only. As we proceed to show, this integral equation can
be solved exactly. Writing (1) as

o R 2[t2(R — a,6) — t2(R, 0)] (12)
== —a,0) —1(R,0)],
902 p, 27 2

and expanding its right-hand side into a Taylor series leads to
3%t R? = (—a)k [ ok
X (50, a
a0 D, ~ k! ork ) es
Substituting the Fourier representation (5) for #, into this equation yields
3%t R? , [ aR a?
el (il
002 D, 2D, 4Ds

0 Nk
_wzz (=a) ayn(n—1)...(n —k+ 1)R"*cos(nb). (14)
k=1 k! n=k

Changing the order of summations over n and k, using the binomial formula and the expres-
sion (7) for «,, give

9% R? , [ aR a?
e
362 D, 2D, 4D,
wZ 0 21 —€
- = Z(x" - 1)cos(n9)/ cos(n®)t,(6')de’. (15)
T
n=1 €

@ Springer



662 0. Bénichou et al.

This integro-differential equation for #; can actually easily be transformed into an integral
equation for #;, by integrating successively two times, which leads to

16) = . R (2R O - 0)
' _5<E w<2—Dz_m)> T

2 _ 2w —e
+ w_ E (x” — 1)% / COS(I’lQ/)tl (9/) d@’, (16)
T n €

n=1

or equivalently to

_ 2w —e€
cos(m9)n+(ne)/ cos(nd)yr(0")de’,

VO =0 -Cr—e—0)+QY (" 1)
" (17)

where

2t1(9)

T’

V(o) = (18)

with T defined in (10) and Q = “’72 Note that (17) holds for 0 € [¢, 2mr — €]. When there is
no desorption (i.e., > = 0), only the first term in (18) survives, yielding the classical result
[30]
RZ
t1(0)=D—1(0—e)(2n—e—9). (19)

The same result is obtained for a =0, since x" — 1= (1 —a/R)" — 1 =0. The limita =0
is in fact equivalent to the limit A = O because, after desorption, the particle immediately
returns onto the circle (a = 0) as if it was never desorbed (A = 0).

3.4 Exact Solution

Iterating the integral equation (17) shows that the solution v (0) writes for 6 € [€, 2w — €]:

V@) =0 —€)Q2r —e—0)+ Zd,l [cos(n) — cos(ne)], (20)

n=1

with the coefficients d,, which satisfy

o0 o0 o0
Zdn [Cos(nH) — cos(ne)] =Q Z(U,, + Z Q,,,,ﬂd,ﬂ) [cos(n@) — cos(ne)], (21)
n=1 n=1 n'=1
where we introduced
X" —1 2m—e , , , , 1—x"
U, = 3 / do’ cos(n6") (0 —e)(27‘r—e—0):4—4 &,
n . n 22)
sin(ne)
&, = (r —€)cos(ne) + n=12,...),
and
1 —x" 7 ’
Qn,n’E_—zle(nsn) (n’n :1727“'), (23)
n
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with

27 —e
I.(n,n') = / cos(nf)(cos(n'0) — cos(n'e)) db

(1= 80 <2COS(n/e) sin(ne)  sin((n’ +n)e)  sin((n’ _n)€)>

n n'+n n—n
. (n ey sin(2ne)>
2n
cos(ne)M cos(n’e) I S‘“("e) sin(2ne)
:2(1_671,11) l’lz—l’l/z /2+8n.n’ (ﬂ—6+T)
(24)
Since (21) should be satisfied for any 6 € [e, 2 — €], one gets d = Q (U + Qd), from which
dy=Q[I —QQ)"'U], (n=12,..). (25)
Since
(o]
I-Q0)"' =) (Q0), (26)

(20) with the d, given by (25) can be seen as a series in powers of 2, whose n-th order
coefficient is explicitly written in terms of the n-th power of the matrix Q.
Note that the first term in (20) can also be expended in a Fourier series

ad 0—€)2mr —e—0 0 <2m —
Zg” [COS(H@) — cos(ne)] = [é €)2r —e€ ), Zt;erszeﬂ €, 27)

n=1

where the coefficients e, are obtained by multiplying this equation by cos m6 and integrating
from O to 27:

en:—izén n=1,2,...). (28)
mn

Once the d, determined, the search time (¢;) is

1 2 2w —e€
<t1>—5f0 t1(9)d9——/ (9)d0— { (r—e)’ —Zdnfn} (29)

3.5 Approximate Solution

While the previous expression of #; is exact, it is not fully explicit, since it requires either
the inversion of the matrix / — Q2 Q or the calculation of all the powers of Q. We give here
an approximation of (I — QQ)~!, which in turn provides a convenient and fully explicit
representation of #;. As shown numerically (see Figs. 2, 3, 4 and Sect. 5 for more details
about numerical methods), this approximation of #; proves to be in quantitative agreement
with the exact expression for a wide range of parameters.

This approximation relies on the fact that, in the small target size limit € — 0, the matrix
Q is diagonal, which mirrors the orthogonality of the {cos(n6)}, on [0, 27r]. More precisely,
one has from (23), (24):

Qm,n = am,n Qn.n + 0(63), (30)
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Fig. 2 (Color online) Comparison between three approaches for computing #1 (@) in 2D: the exact solution
(20), (25), the approximation (32) and the perturbative formula (A.15), with Dy =1, a = 0.01. In the first
row, the other parameters are: € = 0.1, A = 1, and the series are truncated to N = 100. On the right, the
absolute error between the exact solution and the approximation (dashed blue curve) and between the exact
solution and the perturbative formula (solid red curve). The approximation is very accurate indeed. In the
second row, the parameters are: € = 0.1, A = 1000, and the series are truncated to N = 100 for the exact
and approximate solutions, and to N = 1000 for the perturbative solution. One can see that the perturbative
solution is inaccurate for large values of A, while the maximal relative error of the approximate solution is
below 2%. In the third row, the parameters are: € = 1, A = 1, and the series are truncated to N = 100. The
perturbative solution is evidently not applicable. In the last row, the parameters are: € = 1, A = 1000, and the
series are truncated to N = 100. In this case, the approximate solution significantly deviates from the exact
one (providing mostly negative values). The perturbative solution is completely invalid (not shown)
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Fig.3 (Color online) Left: In 2D, the mean time (¢1) computed through (25), (29) with N = 100 as a function
of the desorption rate A for three values of Dy: Dy = 0.5 (dot-dashed blue line), Dy = 1 (dashed green line),
and D) =5 (solid red line). The other parameters are: @ = 0.1 and € = 0.01. When Dy < D) iy ~ 0.6343...
(the first case), (1) monotonously increases with A so that there is no optimal value. In two other cases,
Dy > Dy rit, and (t) starts first to decrease with A, passes through a minimum (the optimal value) and
monotonously increases. Symbols show the approximate mean time computed through (31), (29). One can
see that the approximation accurate enough even for large values of A. Right: The derivative % defined by
(35) for the same parameters

3.5 T T T T : 10 T T T T :

exact ! exact

Rk o approx\m‘ate’ h © approximate
R - - —perturbative 8r 1 - - —perturbative

S

Fig. 4 In 2D, the mean time (¢1) as a function of €, with Dy =1, a = 0.01, and A = 1 (left) or A = 1000
(right). The exact computation through (25), (29) is compared to the approximation (31), (29) and to the
perturbative approach. In all cases, the series are truncated to N = 100. For small A (A = 1), the approximate
solution is very close to the exact one, while the perturbative solution is relatively close for € up to 1. In turn,
for large A (A = 1000), the approximate solution shows significant deviations for the intermediate values of
€, while the perturbative solution is not applicable at all

and keeping only the leading term of this expansion yields
dn%Q(l _QQn,n)ilUnv (3])

from which we obtain the desired approximation:

Y(O)~ (0 —€)2m —e—0)+4Q Z(cos(nO) — cos(ne))

n=1
n(mw — €) cos(ne) + sin(ne) 1—x"
X .
n3 n2+ Q1 —x"I.(n,n)

(32)
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This yields an approximation for the search time:

CUZT X" (7T _ 6) cos(ne) + sin(ne)
<[l> N3 —4Q Z sm()Zne)
27 3 2 24+ QU —xm) (7 —e+ )

2n

(33)

3.6 Variations of the Search Time (#;) with the Desorption Rate A

In this section, we answer two important questions. When are bulk excursions favorable,
meaning enabling to reduce the search time (with respect to the situation with no bulk ex-
cursion corresponding to A = 0)? If so, is there an optimal value of the desorption rate A
minimizing the search time?

3.6.1 When are Bulk Excursions Beneficial to the Search?

This question can be investigated by studying the sign of the derivative a<1 =it at A=0. The
mean search time from (29) can also be written as

(") ' (42| 22—y — e (1 +20)') (34)
=— T —€) — . ,
V= omp2 VT | B3R
where 0 = —Q & = 01 ,n= Z“f <’ The derivative of (t;) with respect to A is then
At R*y [27nD 142014220
<1>= znz[nzl(n—ef—(g.(n + )~+ QU)]. 35)
ar ~ 2m2D?| 3R (I +10)?
If the derivative is negative at A =0, i.e.
2D
n 3R2‘ (m—e)’<(&-U), (36)

bulk excursions are beneficial to the search. This inequality determines the critical value for
the bulk diffusion coefficient D; . (Which enters through 7), above which bulk excursions
are beneficial:

D 6RAE-U)
D2,crit B 7T(7T _6)3(20R —a2)

(o)

24 1—x
T —€)3(1 —x?) HX:; n*

Two comments are in order:
(i) Interestingly, this ratio depends only on a/R and €. In the limit of € — 0, one gets

n

. 2
sm(né)i| ' a7
n

|:(n —€)cos(ne) +

D, 24 ="
~ . 38
D2,crit 77:2(1 - xZ) ; I’l4 ( )
Taking next the limit a/R — O finally yields:
D 12¢(3
L~ Cg ) ~ 1.4615, (39)

D2,cril Y

where ¢ stands for the Riemann ¢ -function.
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Fig.5 Dj ¢y as a function of € 1
is computed from (37) in 2D for —a=0.01
three values of a/R: 0.01, 0.1, ---a=01
and 1. When € approaches 7 (the ogl——a=1 j
whole surface becomes
absorbing), D3 ¢rj; diverges (not
shown). In fact, in this limit,
there is no need for a bulk .
excursion because the target will o e
be found immediately by the -

surface diffusion 041, PR ]

2,crit/D1

0.2 L L L

(i1) The dependence of the r.h.s. of (37) with € is not trivial (Fig. 5). Indeed it can be
proved to have a maximum with respect to €, which can be understood intuitively as follows:
in the vicinity of € = 0, increasing € makes the constraint less stringent since the target can
be reached directly from the bulk; in the opposite limit € — 7, the constraint on D,/D,
has to tend to O since the target is found immediately from the surface. Quantitatively, in
the physical limit @ — 0, one finds that, as soon as D,/ D > (D, it/ D1) =~ 0.68 ..., bulk
excursions can be beneficial.

3.6.2 When is there an Optimal Value of the Desorption Rate A Minimizing the Search
Time?

If the reaction time (#,) is a decreasing function of the desorption rate A, the bulk excursions
are “too favorable”, and the best search strategy is obtained for A — oo (purely bulk search).
For the reaction time to be an optimizable function of A, the derivative % has to be positive
at some A. This necessary and sufficient condition remains formal and requires numerical
analysis of (35). A simple sufficient condition can be used instead by demanding that the
search time at zero desorption rate is less than the search time at infinite desorption rate:

(A =0)) < (t1(x — 00)). (40)
This writes in the physically relevant limit a < R (using the result of [35]):

D, (7 —¢)’ . 1 e usin(u/2)
— > —"—_ withc(e) = du
D, = 3mc(e) 72 A/cos(u) + cos(e)
Finally, combining (37), (41), the search time is found to be an optimizable function of
A in the limit a < R if

(41)

(r -’ _Di o 1 s1n(ne)
Brele) = D, = m g _';|:(7T — €) cos(ne) + } ) (42)
Knowing that c¢(¢€) = In(2/€) + O(€), (42) writes in the small € limit:
2
T D, 12¢(3) 7 )

—_ < <
3In2fe) D, 2

which summarizes the conditions for the search time to be an optimizable function of X.
This case is illustrated in Fig. 10.
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4 3D Case

In this section, the confining domain is a sphere of radius R and the target is the region on
the boundary defined by 6 € [0, €], where 6 is the elevation angle.

4.1 Basic Equations
The 3D analogs of (1), (2) read as

D, (3% N 1 a 4 aln(R 0) — 1,(6)] 1 forf ele, ] (44)
Dy (o' ol —a,0)— = — or €, ],
2\ 902 " tane 90 2 l

o + 20 + Lo + L 12 t(r, 0) 1 45)
—t— =+ =—— r,0)=—1.
Norz2 T ror 2062 T P2tan0 96 )

These equations have to be completed by two boundary conditions:
n(R,0) =1,(0), (46)
1(©)=0 ford €l0,¢l, 47

which respectively describe the adsorption events and express that the target is an absorbing
region of the sphere.

4.2 Integral Equation for #
One can search for a solution in the following form

2 o0
1 (r,0) = otg — 6r—Dz + HZ:;ot,,r" P,(cos ), (48)

where P, stands for the Legendre polynomial of order #. Using the orthonormality of Legen-
dre polynomials, the projection of #,(R, #) on P,, writes

2a, R™
2m+1"

T RZ
f sinf P, (cos0)t,(R,0)d0 =2 (ao - —) Sm,0 + (49)
0

6D,
Knowing that

_|un® ifoelenl,
n(R,0) = {0 if6 [0, €], v

the «,, can be written in terms of #,(6) as

R? L[~
- == inf t,(6) do,
% =D, 2f€ sin6 #,(6)
(S
. 2n+1 (7 .
o, R" = > sinf P,(cosO) t;(0)do ifn>1.
€
Taylor expanding the r.h.s. of
82t1 1 0y R? )
= — o’ [(R—a,0) —1(R,0)] (52)

962 tan@@__ﬁl
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leads to
82t1+ 1 oy R 2%(—# 9%, 53)
902 " ano 90 D, ke \ork ),
k=1 ’
Using (48) for ¢, yields
0%ty 1 oy R ,(aR
802 ' tanf 90 D, 3D, 6D,

oo _ k o
—wzkz( ,j) kann(n —D...(n—k+DR"*Py(cosh). (54)
=1 n=

Changing the order of summations over n and k and using the binomial formula and (51)
for «,, finally give

902 Tano o0~ D,

3D, 6D, _Z(x —1)P,(cos®)(2n+ 1)

2

3%t 1 9y R? 2(aR a? ) 0? &
n=1

X / sin@’ P, (cos8)t;(8") do’, (GR))

where, as in previous section, x = 1— %. This integro-differential equation for #; can actually
easily be transformed into an integral equation for #;, by integrating successively two times.
Indeed, multiplying first both members of (55) by sinf and integrating between m and 6
gives

ino 1@ = [ X 4o (2R~ 2 V] coso 11+ 2 §m(" 1)(Py41(cos6)
S1n = | — w _— = — COS —_— X — n COS
! D, 3D, 6D, 2 +

n=1
b
— n_l(cose))/ sin@’ P, (cos 8"t (0") o', (56)
where we have used
/P( )d : (1-x)P;(x) 1 (Pyt1(x) = Py1 (%)) (57)
w()dx =———(1—x X)=——(Ppp1(x) — Pr_1(x)).
n(n+1) " ng1 ! :
Dividing (56) by sinf and integrating between € and 6 finally leads to
R? R 2 in(6/2
n@) =2 (B o (AR AN, (002
D1 3D2 6D2 SIH(E/Z)

2 1 4
+ il Z(x" — l)n(Zi::—_l) (P,(cosB) — Pn(cose))/; sin@’ P, (cos0)t,(9") do’,

where we have again used (57), or equivalently to
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) =1 (1 COS@) QZ( 21E L (P cos6) — Py(cose))
(@) =In T cose ( +1) cos  (cos €
x / i sin(8") P, (cos 8"y (0') dé’, (58)

with the following definitions

1 (0) 1 R>—(R-a)? w?
0)=——, T=—+———, Q= — 59
v w?T A + 6D, 2 (59)
in this 3D case.
4.3 Exact Solution
Iterating the integral equation (58) shows that the solution v (9) writes for 0 € [e, 7 ]:
1 —cosé
v@)=In{ —— |+ Zd P (cosf) — P, (cose)] (60)
1 —cose
with the coefficients d,, which satisfy
o0 o0 o0
> " du[Pi(cos) — Py(cose)] = Q Z(U +y Q,,,,,/dn/) [P.(cos®) — Py(cose)],
n=1 n=1 n’'=1
(61)
where we introduced the new definitions
"— 12 1 0’ 1—x"(2 1
Unfw/ 40’ sin(@') Pa(cos 0y In [ =<0 ) _ A =xD@n D
nin+1) 1 —cose n?(n +1)2
£ 1_}_ncose P )+P,,_|(COS€) ( 12,
= —_— cose) + ——— =1,2,..)),
§ n+1 . n+1 .
(62)
and
(I=x"2n+1) / /
i =————"-"——"1I1(n, n'=1,2,..), 63
O, nit 1) (n,n’) (n,n ) (63)
with
I.(n,n") E/ P,(u)(Py(u) — Py(cose))du. (64)
-1
In Appendix C, we compute this integral explicitly.
Since (58) should be satisfied for any 6, one gets d = Q (U + Qd), from which
=Q[U-Q0)"'U], (n=1,2,..). (65)
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As in 2D, using the series expansion of (I — QQ)~', (65) can be seen as a series in
powers of 2, whose n-th order coefficient can be explicitly written in terms of the n-th
power of the matrix Q.

Note that the first term in (60) can also be represented as a series

= 1—cos 6 _
Zen[Pn(COSG) — Py(cose)] = {On(l—cose)’ €< <m—e, )

— otherwise,

where the coefficients e, are obtained by multiplying this equation by P,(cos6)sinf and
integrating from O to 7:

2n +1
n=— — ne 7
= T D) ©7)

Once the d,, determined, the search time (#;) can be written as

*T 2

4 . o T 2 =
(t1)=7/€ dO sin6 w(e):T{Zln <m> —(1+cose)—;dnf,,}. (68)

4.4 Perturbative Solution

The first terms of a perturbative expansion with respect to € can easily be obtained from the
previous exact solution. At leading order in €, we have

20 —x")2n+1)

—_ 77O —
Up=U}"+0(6) = = o2 S+ 0(),
2 " (69)
PN N S
Onn=0,,+0(@E)= DG+ D) S+ O(e),
from which

nn+1)nn+1)+220 —x")
One finds therefore
Y (@) = —2Ine +21n(2sin(0/2))

—20Y (11— 2n+1 L= Pcost) | 5. (1)
n=1

nn+1)nn+1)+22( —x")

Averaging over 0, it finally yields:

oo

<l1)%w2T{—21n(e/2)—1_2QZ 2n+1 1—x"
n=1

nn+1)nn+1)+2Q( —x")

+ 0(6)}. (72)

This result was given in [42] without derivation.
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4.5 Approximate Solution

As earlier for the 2D case, an approximate solution can be derived. As shown numerically
(see Figs. 6, 7, 8 and Sect. 5 for more details about numerical methods), this approximation
of #; proves to be in quantitative agreement with the exact expression for a wide range of
parameters.

This approximation relies on the fact that, in the small target size limit ¢ — 0, the ma-
trix Q is diagonal, which in turn mirrors the orthogonality of {P,(cos6)}, on [0, 7 ]. More
precisely, one has

Qm,n = Sm,n Qn,n + 0(64), (73)
and keeping only the leading term of this expansion yields
dn%Q(l _QQn,n)ilUna (74)
from which
1 —cos6 = a 2n+1
¥ (0) ~In (W) +Q) (1-x )m(P ,(cos ) — P, (cose))

n=1
1+ "ncislf)P (cose) + M )
n(n+1)+Q(1—x")(2n+1)I (n,n)’ (75)

The mean time (#,) is then approximated as

2 1
) ~ T in B +cose
1 —cose 2
1(cose)

__Z(l—x">(2n+1> [(14 225 P, (cose) + A=l ]} (76)
nn+1) nn+1D+Q0 —x)C2n+ DI.(n,n) ||’

where I, is defined by (64).

4.6 Variations of the Search Time (#;) with the Desorption rate A
We investigate here as in the 2D case the dependence of (#;) on A.
4.6.1 When are Bulk Excursions Beneficial to the Search?

The sign of 2 at A =0 is conveniently studied by rewriting (68) as

(1+M){4D [m( 2 )_1+cose}_k(g.(1+k@fll])}, a7

4

4D2

t
(h) = R? 1 —cose 2

where 0 = — Q& 5 01 and n = 2"R ~’ The derivative of (t;) with respect to X is then

a(t1)=L4;7{|:ln( 2 >_ 1+cose}_<€'(n—1+ZA)I~+A2QU>}. (78)
dr  4D? 1 —cose 2 (I +10)?

If the above derivative is negative at > =0, i.e.

4D, 2 1+cose &-U)
F(ln(l—cose>_ 2 >< n (79
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Fig. 6 (Color online) Comparison between three approaches for computing #1(#) in 3D: the exact solution
(60), (65), the approximation (75) and the perturbative formula (71), with Dy =1, a = 0.01. In the first row,
the other parameters are: € = 0.1, A = 1, and the series are truncated to N = 100. On the right, the absolute
error between the exact solution and the approximation (dashed blue curve) and between the exact solution
and the perturbative formula (solid red curve). The approximation is very accurate indeed. In the second
row, the parameters are: € = 0.1, A = 1000, and the series are truncated to N = 100. One can see that the
perturbative solution is inaccurate for large values of A, while the maximal relative error of the approximate
solution is still small. In the third row, the parameters are: € = 1, A = 1, and the series are truncated to
N = 100. The perturbative solution is inaccurate as expected for large €. In the last row, the parameters are:
€ =1, 1 = 1000, and the series are truncated to N = 100. In this case, the approximate solution deviates from
the exact one for. The perturbative solution is negative and not shown
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35 : . . . . 0.1
--D,=19 Lo
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Fig.7 (Color online) Left: In 3D, the mean time (¢;) computed through (65), (68) with N = 100 as a function
of the desorption rate A for three values of Dy: Dy = 1.9 (dot-dashed blue line), Dy = 4 (dashed green line),
and Dy = 10 (solid red line). The other parameters are: a = 0.1 and € = 0.01. When D < Dy ¢4t & 1.9997...
(the first case), (#1) monotonously increases with A so that there is no optimal value. In two other cases,
Dy > D3 i, and (t1) starts first to decrease with A, passes through a minimum (the optimal value) and then
increases. Symbols show the approximate mean time computed through (76). One can see that the approxi-
mation accurate enough even for large values of A. Right: The derivative % defined by (78) for the same
parameters

10, : 25 -
exact exact
8 o approximate|] o approximate
- - -perturbative 20 - - -perturbative ||

Fig. 8 In 3D, the mean time (¢{) as a function of €, with Dy =1, a = 0.01, and » = 1 (left) or A = 1000
(right). The exact computation through (65), (68) is compared to the approximation (76) and to the perturba-
tive approach. In all cases, the series are truncated to N = 100. For small A (1 = 1), the approximate solution
is very close to the exact one, while the perturbative solution is relatively close for € up to 1. In turn, for large
A (A =1000), the approximate solution shows significant deviations for the intermediate values of €, while
the perturbative solution is not applicable at all

bulk excursions are beneficial to the search. This inequality determines the critical value for
the bulk diffusion coefficient D, . (which enters through n):

Dy i I 2 1 +cose 2(2aR —a?)
= n —
D, 2 3R%2(& - U)

1 2 14cose2(1 — x?)
= n —_
1 —cose 2 3

00 n -1
“ (Z Q=X D L1 4 ncose) Py (cose) + P,,_l(cose)]z) . (80)

n2(n+1)*

n=1

@ Springer



Mean First-Passage Time of Surface-Mediated Diffusion in Spherical 675

Fig.9 Dj i as a function of € 2.5

is computed from (80) in 3D for —a=0.01
three values of a/R: 0.01, 0.1, | ---a=0.1
and 1. When € approaches 7 (the

whole surface becomes
absorbing), D3 ¢rj; diverges (not
shown). In fact, in this limit,
there is no need for a bulk
excursion because the target will
be found immediately by the
surface diffusion. In addition,

Dy ¢rit also diverges as € — 0
because a point-like target cannot
be detected neither by bulk 0 : ; :
excursions, nor by surface .
diffusion in 3D

In the limit of € — 0, one gets

Dyaii _ 2In2/e) — (A —x?) (i I-=x"C2n+1

-1
) - T ) +0@). 8D

n=I

In the physically relevant limit a < R, one has

221n(2/€) — 1)
2

Dyern  (2In2/€) = 1) (Z ntl +0(e). (82

—1
D, 3 n(n+1)2> +0(e) =

n=1

There are similarities and differences between the behaviors of D i in 2D and 3D.
Figure 9 shows that D; . from (82) is not a monotonous function of €, with the qualitative
explanation which is the same as in the two-dimensional case.

In contrast to the analogous (39) in 2D, the r.h.s. of (82) diverges as € — 0. This diver-
gence reflects the fact that a point-like target (¢ = 0), which could be found within a finite
time in 2D by one-dimensional surface diffusion on the circle, is not detectable in 3D neither
by bulk excursions, nor by surface diffusion.

4.6.2 When is there an Optimal Value of the Desorption Rate ). Minimizing the Search
Time?

For the reaction time to be an optimizable function of the desorption rate A, it is necessary
to write an additional condition, requiring that the bulk excursions are not “too favorable”
(otherwise, the best strategy is obtained for A — 00). A sufficient condition is given by
demanding that the search time at zero desorption rate (i.e., without leaving the boundary)
is less than the search time at infinite desorption rate

(A =0)) < (L1(x — 00)), (83)
2

R
(n(x=0)) = 3(2111(2/6) — 1)+ O(e), (34)
1
which writes in the physically relevant limit a << R (using the result of [43]):
2

3€D2

(HH(A — 00)) = (1+€lIn(1/€)). (85)
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2
surface diffusion is preferred 1 00 surface diffusion is preferred
1.5¢
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0 . . . .
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Fig. 10 (Color online) The regions of optimality for the search time in 2D (left) and 3D (right). The lower
bound (solid blue line) and upper bound (dashed red line) are given in the limit of ¢ < R and € < 1 by
(43), (87) in 2D and 3D, respectively. When the ratio D1 /D, lies between two curves, the search time (#1)
is optimizable with respect to L. Above the upper bound, surface diffusion is preferred (A = 0 is the optimal
solution), while below the lower bound, bulk excursions may be “too favorable” (A — oo may give the
optimal solution). We recall that the lower bound was obtained from the sufficient condition (83) meaning
that the region below the dotted line may still be optimizable.

Finally, this conditions leads, for small €, to

Dl 3¢
— > —2InR2/e) — 1). (86)
D2 T
Combining the two conditions (82), (86), the search time is found to be optimizable when
a< Rande <« 1if

Dl 7'[2

3e
— @22/ - 1) < D, " 22In@2je) 1)

(87)

5 Numerical Resolution

In the previous sections, we derived the closed matrix forms (25), (65) for the coefficients
d, in 2D and 3D. These coefficients determine the angular dependence of ¢, (¢) through the
explicit representations (20), (60) in 2D and 3D, respectively. Although the formulas (25),
(65) which are based on the inversion of an infinite-dimensional matrix (I — 2Q) remain
implicit, a numerical resolution of the problem has become straightforward. In fact, one
needs to truncate the infinite-dimensional matrix Q and vectors U and U and to invert the
truncated matrix (I — Q) numerically.

There are six parameters that determine the function #,(6): the radius R of the disk
(sphere), the diffusion coefficients D; and D,, the desorption rate A, the size € of the absorb-
ing region, and the distance a. From now on, we set the units of length and time by setting
R =1 and D, = 1. Although the distance a may take any value from O to R, the physically
interesting case corresponds to the limit of small a. As we mentioned previously, the limit
a = 0 exists but trivially leads to searching on the surface, without intermediate bulk ex-
cursions. In order to reveal the role of a, we consider several values of a: 0.001, 0.01, 0.1
and 1, the latter corresponding to the specific situation when search is always restarted from
the center. Since the diffusion coefficient D, enters only through the prefactor 7' from (10),
its influence onto the searching time #; is easy to examine. In what follows, we take three
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values of D,: 0.1, 1 and 10. The dependence of ¢, on the desorption rate A and the size € is
the most interesting issue which will be studied below.
In the previous sections, we derived several formulas for computing #;:

e explicit representations (20), (60) with the exact expressions (25), (65) for the coefficients;

e approximations (32), (75) which were derived by neglecting non-diagonal elements of the
matrix Q;

e perturbative formulas (11), (71) which are valid for small €.

For a numerical computation of the coefficients in (25), (65), we truncate the infinite-
dimensional matrix Q to a finite size N x N and invert the matrix (/ — Q). In order to
check the accuracy of this scheme, we compute the coefficients by taking several values of
N from 10 to 200. For D, =1, € =0.1, a = 0.01 and A = 1, the computed mean time (¢;)
rapidly converges to a limit. Even the computation with N = 10 gives the result with four
significant digits. Note that other sets of parameters (e.g., larger values of 2) may require
larger truncation sizes.

6 Conclusion

To conclude, we have presented an exact calculation of the mean first-passage time to a
target on the surface of a 2D and 3D spherical domain, for a molecule performing surface-
mediated diffusion. The presented approach is based on an integral equation which can be
solved analytically, and numerically validated approximation schemes, which provide more
tractable expressions of the mean FPT. This minimal model of surface-mediated reactions,
which explicitly takes into account the combination of surface and bulk diffusions, shows
the importance of correlations induced by the coupling of the switching dynamics to the
geometry of the confinement. Indeed, standard MF treatments prove to substantially under-
estimate the reaction time in this case [6], and sometimes even fail to reproduce the proper
monotonicity [39]. In the context of interfacial systems in confinement, our results show
that the reaction time can be minimized as a function of the desorption rate from the sur-
face, which puts forward a general mechanism of enhancement and regulation of chemical
reactivity.

Appendix A: Another Approach in 2D

In this appendix, we describe another theoretical approach which relies on the explicit form
of the Green function of the Poisson equation in 2D case. In particular, the perturbative
analysis for small € becomes easier within this approach.

Considering #, as a source term in the Poisson type equation (1) with absorbing condi-
tions at @ = € and 6§ = 2w — € whose Green function is well known [44], t; writes

1 2w —e ] )
H0) = m /€ sinh(w(f. — €)) sinh(w(2mr — e —6..))
R? Ath R 0" | do’ A.l)
<5, + ke | *

and the notations 6. = min(0, 8’) and 6. = max(0,6’).
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Injecting (5) into (A.1) leads to

_ w (R_a)z - m
11(9) = m(l((),@)(l-’-k(do— 47D2)> —i—)»Zam(R—a) I(m, 9)),

m=1
(A2)
where, for m integer,

2w —e
I(m,0) = / sinh(w (0~ — €)) sinh(w (2w — € — 6..)) cos(mb) do’
w .
= m(cos(m@) sinhQw(r — €))

— 2 cos(me) sinh(w (r — €)) cosh(w (6 — m))), (A.3)
so that

(R —a)?

oo
2 U m
4D2 +w E m(R — Cl) COS(m@)

m=1
_ cosh(w(0 — 1)) (1 _ (R—a)

cosh(w(m —€)) \ A %o 4D,

1
n() = 7t

oty ﬁm —a)" Cos(me)). (A4)
m=1

Substituting (A.4) into (7) gives

tanh(w (T — €)) € € R? e\ (R —a)?
§— - =——2A l—— 4+ A —— 1——>4
T T %+ T + <4D2 ( T 4D,

At & oy (R ¥ sin(me) (A5)
- — —a)"———-, .
Fid ?* +m? m

m=1

and
a(r - (1 € ) (R—a)'
- (1-= —a)" | ay,
w? +n? T

_ 2sin(ne) (R —a)?
=2 (e (- 50))

? (Z U gy S0 =)

w? 4+ m? m-—n

Oy o SIN((m +n)e)
+Zw2 mz(R_a) m+n )
_ 2tanh(w (T — €))

e (A.6)

S (a)cos(ne) — nsin(ne) ) s

tanh(w (T — €))
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where

Ssl+k<a0—(4 >+Aw22

Equation (A.5) can be rearranged into

< 3 R? ) <i N tanh(w (7w —6)))

@0 4D, Tw
i R* (R—a)? L€ tanh(w (r — €))
‘<X+<4—D2_Toz))< _E_T>

@ Z (R—a) ([anh(a)(ﬂ' —¢€)) cos(ne) + % Sin(né)) Qp, (A-8)

(R —a)" cos(me). (A7)

0)2 +n 2
and (A.6) into
o (1€ ) (R —a)"
@ +n? ( o )
2

= i +T G (n€) + —— tanh(w( ) cos(ne)
=—— - — ——— sin ——— tan —
Qg w2+nzs ne P anh(w (m — €)) cos(ne

m

_ﬂ(w2+n2)m:1°‘m o T g SOS(me) (@cos(ne) tanh(w(w — €)) — nsin(ne

2

_a)_(z . (R— o sin((m —n)e)
T m#na) + m-—n

w2 m+n
m=1

.S )M) a9

A.1 Particular Case A =0
In this case, the previous equations can be solved exactly, leading to

R 1R (7 —e)
0 & IR @ (A.10)
4D2 3 Dl b

and
_ _ER_zn(n —€)cos(ne) +sin(ne) 1 . (A11)
T D1 n3 R”

We note that the particular case a = 0 is also described by these expressions, although it
does not seem to be clear from (A.5)—(A.6).

oy

A.2 Particular Case a = R

Here again, (A.5)—(A.6) can be solved exactly, and give :

5w T ap,

R? 1 R\ 1— & _ tanh@(@—e)
YT, T ( ) € 1 wh@E—e) (A.12)

Tw
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and
2 /1 R? w  2sin(ne) + tanh(w(m — €)) cos(ne) 1
0, =—— - +— n —. (A.13)
T 4D2 w? +n2 £y tanh(w (7 —€)) R"
A.3 Perturbative Approach
Expanding o and «, in powers of €
oy = 04 a(l)e + a(z)ez +- and o, = oz(o) + a“)e + (x(z) LR (A.14)
Equations (A.5)—(A.6) lead, after lengthy calculations, to
R? 1
=— Ti(2 _
o= 4D, o’ {( ;wz(l —x’”)+m2>
> I —x"
- 1 +20° S cee A.15
ne+<+w;w2(l_x,n)+m2)e}+ (A.15)

o*T
R"(@?(1 — x™) +n?)

[-2+n*+---}.

ay =

Appendix B: A second Integral Equation Satisfied by ¢ in the 2D Case

Using (7) for the Fourier coefficients in (A.4) leads to a second integral equation satisfied
by N

HO) =T (1 B cosh(w(m — 9)))

cosh(w(r — €))

e cosh(w(mr —0))
+/ (o) <J(6,a) — 7.’(6,0{)) de, (B.1)

cosh(w(mr — €))

where

JO, )= — + Z (1 — %)n cos(nf) cos(na). (B.2)

w? +n?

This equation is especially well adapted to local expansions of #;(€) in the vicinity of a >~ R,
but it can also be rearranged into the following integral equation, useful whena < R :

. _ ( cosh(w(m — 9))) 1)
1) =T(1- + =
cosh(w(mr — €)) sinhRw (r — €))

2m—e
X / t1(8") sinh(w (O~ — €)) sinh(w (2w — e —0.)) do’

e ~ cosh(w(r — 6)) ~
+/; (@) (J(@, o) — m]( Ot)) (B.3)
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where
J6.0)= %i . ((1 — 3)" - 1) cos(n6) cos(na). (B.4)

w? +n? R
n=1

Appendix C: Computation of I (m, n) in 3D

In this appendix, we provide the explicit formula for the matrix I.(m, n) in 3D case. Al-
though technical, this is an important result for a numerical computation because it allows
one to avoid an approximate integration in (64) which otherwise could be a significant source
of numerical errors. The formula (C.6) for non-diagonal elements is somewhat elementary,
while the derivation for diagonal elements seems to be original.

C.1 Non-Diagonal Elements

The Legendre polynomials satisfy

i[(1 —xz)ip,,(x)] +nn+1)P,(x)=0, (C.1)
dx dx
from which
bd P,(x) = [(1—=xH)P,(x)] 1> 0) €2)
/; XI(X)= —W n > .
and
b _[a —xH)[ P, (x)P)(x) — P,(x) P, ()15
/a dx Py (x) P, (x) = o+ 1) —nit D (m #n). (C.3)
Since

(1 =xHP/(x) = —nxP,(x) +nPy1(x) = (n+ DxPy(x) — (n + D Py (x),  (C4)

we find

b _ b
/ dx P, () = P = PO (C5)
p n+1

and

[(m — n)x Py (x) Py (x) + n Py (x) Py (x) — m Pyy_y (x) Py (X)]15
mm—+1)—nn+1)

(m #n). (C.6)

b
/ dx Pm(x)Pn(x) =

From the above formulas, we get

(n —m)uPy(u) P, () + (m + 1) Py (W) Py () — (n+ D) P, () Py ()
(n+Dm@m +1) —n(n +1)] '

I.(m,n)=m

u=cose (m#n).
(C.7
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C.2 Diagonal Elements

We denote
b
K, = / dx P2 (x). (C8)
Using the relation
2n —1 n—1
Pn(x) = xpn—l(x) - T ,1_2(.)(), (C9)
we obtain
2n—1 [° n—1 [°
K, = dxxP,_1(x)P,(x) — —— dx P,_»(x)P,(x). (C.10)
n a n a

The second integral is given by (C.6). In order to compute the first one, we consider

b
0=/ dx{xp,,_l(x)[i[(l—xZ)iP,,(x)]+n(n+1)P,,(x)]
p dx dx
—xP,(x)| | (I =x7)—=P1(x) [+ (n = DnP,_1(x)
dx dx

b
:211/ dxx P,_1(x) P, (x) + [x P,y () (1 — x%) Py (x) — x P, (x)(1 —xz)P,;,l(x)]fj

b
—/ dx(1 —x*)[P)(x) Py (x) — P)_ (x) P, (x)]. (C.11)

The last integral can be written as
J= / ax(1 - ) P2 Py (0)/ P () = [(1 = 2 Py (1) P ()],
- /b dx(Py_i(x)/ Py (x))[2x P (x) 4+ 2(1 — x*) P (x) P, (x)] (C.12)
= [0 =P )P 0] —2 /b dx[—x P_y (0) Py(x) + (1 — %) PL(x) Py (1)].
In the last term, we substitute (1 —x?) P/ (x) to get
J=[0=xP P, + 2/bdxxP,,_1 ()P, (x)
b p
- 2/a dx [—nx Py(x) +nPy_1(x)] Py_y (x). (C.13)
Bringing these results together, we get
0=2n /bdxxP,,_l(x)Pn(x) + [Pt () (1 = X PLx) — x Py (0) (1 = D) Py (0]
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b
+[A =P )P +2 / dx x P,_1(x) P, (x)
b
—2[ dx[—nx Py(x) +nP,_;(x)] P,—1 (x) (C.14)

so that

b
/ dx x P, (x) P,y (x) = [x(1 = x>)[Puci (X) Py (x) = Pu(x) Py_  (x)]

4n +2
+ (=) PP O]+ 5K, (C.15)
e 2n+1
We obtain
K= -l L= ) [Py PL) = By) Py ()]
" 2n@2n+1) o e
+ (1= x) P ()P0 + -l
n—1 n a n + 1 n—1
n=1[2x P2 (x) Py (x) = n P, 1 (0) Pya(x) + (n = 2) P, 3(x) P, () ]’
— . (C.16)
n 22n—1) B
We can further simplify this expression by using the following identities
(n =D P (x) = (2n = 3)x Py2(x) + (n = 2) P,—3(x) =0,
nP,(x) — 2n—DxPp1(x) + (n = 1) P,2(x) =0,
(C.17)

(1 =x?)P)(x) = —nxPy(x) + nPy_1(x),
(1 —=xHP_(x) =nxPy_1(x) —nPy(x).

We get
K =—ﬁ[nx[P2 (x) + P2(x) = 2x P, (x) P, ()]
" 2n2n+1) n-l " men
(=P P @)] 4 n |
F e T S i1 T 2nn — 1)

x [2n = Dx Py (x) P2 (x) — n Py (1) s () — (0 — D) Py (1) Py ()],

2n —1 2
T a1 [l P

(xX) + P7(x) = 2x Py (x) Py (1) ]

+(1=xX)P ()P0 + MK,H
¢a 2n+1

- %[((2;1 =12+ D P () Pyt (6) = nx (P () + PR,

_ [x(P? (x) + P}(x)) —2P,(x) P, ()2 2n—1
- 41 + 2n+1K’H (C.18)
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and we know that Ky = b — a. Applying this formula recursively, one finds

« B~ @

= , C.19
2n+1 ( )

where

Fo(x) = x[P}(x) + 2P () + -+ + 2P (x) + Py(x)]
—2P,(x) Py (x) = 2Py 1 (X) Pya(x) — - = 2P1(x) Po(x) + x
=Y [2(c = DPZ(x) + [Pe(x) = Peoa ()] = (x = DPI(x) + (x = D P (x) + x.

k=1
(C.20)

One can check that this function satisfies the recurrent relation
F,(x) = F,_1(x) + x[P;(x) + P} (x)] = 2P, (x) P,_1 (x),  Fo(x) =x. (C21

Note that F, (1) = F,_ (1) =-.- = =%1.
As a result, we obtain
uPn(u)_Pn—l(u) Fn(”)+1

I.(n,n) =—P,(u) oY + P U = COSE. (C.22)
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